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The new probabilistic approach applied by Hauptman to quartet invariants is compared with the method 
used by Giacovazzo. It is shown that the two approaches can lead to mathematically identical distributions 
even if they start with conceptually different postulates: the reciprocal vectors are the primitive random 
variables in the first approach, the positional parameters in the second. The probabilistic meanings of some 
conclusive phase relationships are discussed. 

Introduction 

Phase relations between four linearly dependent re- 
flexions h, k, I, h + k + l have been shown to be useful for 
the direct solution of crystal structures. Schenk (1973) 
discussed such quartets and gave an estimate of the 
quartet cosine invariant by constructing each quartet 
from the difference of the phases of two triplets relative 
to the same reflexion. 

More reliable estimates of the quartet cosine in- 
variant have recently been given, via the method of the 
joint probability distribution functions, by Hauptman 
(1975a, b), Green & Hauptman (1976), Hauptman & 
Green (1976) and Giacovazzo (1975, 1976a, b,c). 

Giacovazzo's probabilistic approach generalizes the 
original Klug (1958) formalism, which develops the 
joint distribution functions in a strictly asymptotic 
series in powers of N-1/2, where N is the number of 
equal atoms in the cell. From a statistical point of view 
the crystallographic problem is clear: the joint distribu- 
tion P(Ea, E2,... ,  E,) 

involves a number of structure factors each of which is 
a linear sum of random variables (the atomic contribu- 
tions to the structure factors). In X-ray diffraction 
experiments the reciprocal vectors are known param- 
eters, while the atomic coordinates are not. So it may 
be convenient to consider in the statistical interpreta- 
tion of the phase problem the atomic positions as 
random variables. 

A different basis was postulated in the probabilistic 
approach introduced by Hauptman (1975a, b) and used 
also by Hauptman & Green (1976): the crystal structure 
is assumed to be fixed as well as one or more recip- 
rocal vectors, while one or more other vectors are 
assumed to be the random variables. 

It is evident that the distribution based on atomic 
coordinates as the independent variables is conceptu- 
ally distinct from that in which it is assumed that the 
reciprocal vectors are random variables. Nevertheless 
both types of distribution require that the fractional 

* Editorial Note. A few days after this paper was received, a paper 
containing essentially the same results was submitted by J. J. L. 
Heinerman, Laboratorium voor Structuurchemie, Rijksuniversiteit, 
Padualaan 8, Utrecht, The Netherlands. The editors greatly regret 
that space does not permit the publication of both papers. 

part of hr is uniformly distributed in the interval (0,1). 
A question arises: Owing to the symmetrical role 
played by h and r in the two kinds of distribution, can 
one expect mathematically equivalent results from 
distributions conceptually distinct? Green & Haupt- 
man (1976) have claimed that there is no reason to 
suppose that the two kinds of distribution can lead to 
identical results. Their conclusion was: 'Again, it 
should be stressed that it is our distribution which is 
the appropriate one for crystal structure analysis, ..., 
since one is ordinarily given a fixed but unknown crys- 
tal structure, and structure factor amplitudes are 
sampled from reciprocal space'. The final phase rela- 
tionships, obtained by application of the two kinds of 
distribution to the quartet cosine invariants, seem to 
justify Hauptman & Green's conclusions. In fact 
Giacovazzo's approach led to the statement that a 
quartet cosine 

COS (q)h  "3t- (pk -~- (/0 ! - -  q)h + k + 1) 

is probably positive when 

IEh+k[ 2 + ]Eh+i] 2 -+- [Ek+l]2 > 2. 

On the contrary, from the Hauptman approach, the 
sign of a quartet cosine depends on an intricate inter- 
relationship among all the seven magnitudes 

IEhl, IEk[, IEll, IEh+k+ll, IEh+kl, ]Eh+ll, IEk+d. 

In the present paper we will show that the two distribu- 
tions are mathematically equivalent when applied to 
quartet invariants; furthermore, they are in principle 
equally appropriate for crystal structure analysis. In 
particular Giacovazzo's approach will prove able to 
obtain Hauptman's distributions and vice versa. The 
algebraic differences between the final phase rela- 
tionships described in the quoted papers are shown to 
be essentially due to the different physical meanings of 
the formulae and not to the kinds of distribution. This 
study will enable us to generalize the phase relation- 
ships obtained in the quoted papers. 

A general expression for the characteristic function 

For a structure consisting of N identical point atoms in 
a non-centrosymmetric space group of order rn a 
general normalized structure factor Eh is defined by 
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Eh = Ah + iBh = N -  1/2 L ~(h) 
j=l 

t 
= m  - ' ~  Y. ~,(h)+i~,(h) ,  

j = l  

where ~ and r/are the trigonometric functions for the 
real and imaginary parts of the structure factor, t is the 
number of independent atoms in the unit cell. The 
joint probability function 

P(Ahl, Ah 2, . .- ,  Ahn; Bh 1, Bh 2, . .- ,  Bh n) 

is found by taking the Fourier transform of the 
characteristic function 

C(b/1, /12, . . . ,  b/n; 01, V2, . . . ,  On), 

where u j, vj, j = 1,..., n, are carrying variables associated 
respectively with Ah~ and Bh~ values. 

It is possible to find an algebraic expression for C 
which does not formally depend on the choice of the 
primitive random variables. In accordance with Klug 
(1958) and Karle & Hauptman (1958) 

C(ul ,  ..., u,; v~, ..., v,) 

= (exp i(ulA1 + u2A2 -[-... "k vnBn)) 

=lexp{iN-U2[ ul~{j(hl)i= 1 
+u2j__l ~(h2) + ... + v . j Z  rh(K) 

= f i  (exp iN-  1/2[Ul~j(hl) 
j = l  

+ uG(h2)+ ... + v.~(K)] > 

= ~ JC(N- 1/2ul,  N -  IU2, . . . ,  N -  ll2vn). (1) 
j = l  

JC is the characteristic function of the joint probability 
distribution of the contributions of the jth atom to the 
structure factors Eh~,...,Eh,. Equation (1) is the 
required expression for C. According to whether the 
h reciprocal vectors or the r vectors are the primitive 
random variables, the average in (1) must be taken over 
h or over r. By the changes of variable 

uj = Oj cos C j, vj = 0j sin Cs 
Aj = Rj cos q~j, Bj = Rj sin r&, 

(1) becomes in P1 

c(ol,..., ~o,;,/,1,..., ¢.) 
= ( e x p  i[01R1 cos ( ¢ 1 - ~ o 0 + . . .  
+ 0,R, cos ( 0 , -  q~,)]) 

N 
= I-I (exp iN-1/2[o I cos (2rchl r j -Ol)+ . . .  

j = l  

+ 0, cos (2r&,rj-  ¢ , ) ] ) .  (2) 

Equation (2.4) of Hauptman (1975a) and our approach 
are both in accordance with (2). 

The mathematical approaches 

Different approaches have been used by Hauptman 
and Giacovazzo in order to derive the explicit expres- 
sion of (1). Giacovazzo (1975, 1976a) introduced for 
each JC the multivariate cumulant generating function 

JK(iUl, ... ;..., iv,)= log JC(ul, ... ;..., v,), 

which expanded in the series of cumulants, gives 

C(Ul , . . . ; . . . , v , )=exp[  ~j=l r+s+w=2£ N-t'+s+'"+w)12 

JK,.,... w 1 x risiiT, fv! (iul)r(iu2)S'"(ivn)W " (3) 

JK ....... is the cumulant of order r +  s+ . . .  + w of the 
generating function JK. If the standardized cumulants 
J2,s...w are introduced (they are marked by the prop- 
erty 2200... =2020... = . . . =  1), (3) becomes 

C(ul, . . .; . . . ,v,)=exp[~j=l ,+,+ ...w=2£ 2-t'+*+ " '  +w)/2 

'2r, .w f i u l y f i u 2 y  {iv,,~w 1 
x t , , 'U l 

--exp[ :t 
where 

(4) 

S~= ~ ~ ( 2 )  -~/2 
r+s+...+w=v j = l  

J2,.s w (iuaf(iu2)S. (iv,,)w. (5) x ~-"wV " "  

r . . . . . .  

The Taylor's series of (4) was used in Giacovazzo's 
approach. Hauptman's formalism seems superior. In 
fact it is able to derive an accurate expression for JC 
[ga in Hauptman's (1975a) notation; see equation 
(II.29)] but suffers from two approximations (see 
Appendices I and III, Hauptman, 1975a). The first is 
the Taylor expansion of the Bessel function Jm(Z): 

J,,(z) - 2"F(m + 1) 1 4(m + 1--------~ + . . . .  

The second is the Taylor expansion of the logarithmic 
function 

log JC = JC - 1 + .... 

In conclusion, the algebraic expression of the charac- 
teristic function obtained by Hauptman (1975a; equa- 
tion lII.3) coincides with (4). As the joint distribution 
function is unequivocally fixed by the characteristic 
function, the same phase relationships are obtainable 
whether the reciprocal vectors are the primitive 
random variables or not. 

From a general point of view both postulates, i.e. 
the reciprocal vectors are the primitive random vari- 
ables as long as the structure is fixed and vice versa, 
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seem to us to be equally appropriate for crystal struc- 
ture analysis. Their distributions may give, according 
to circumstances, equal or complementary results and 
deserve to be simultaneously pursued. 

Some considerations about quartet phase relationships 

In accordance with Hauptman, let us make use of the 
characteristic function of the exponential form (4). For 
the sake of simplicity we refer to Pi. If we introduce 
the concept of joint probability distribution of signs 
of structure factors (Naya, Nitta & Oda, 1964) 

P(R1S1, ..., R,S,,) 
P ( S , , . . . ,  S,,) = ~_, ... Z P(R1S1,'", R,S,) '  

SI=+_I Sn=+l 

we obtain for the sign of a quartet, the relationship 

e-8.  F + 
P +  = 

e -B. F + + e  B. F - '  

where B = 2R 1 R z R 3 R 4 / N ,  

(g12 
F +- =cosh  \ I / X  

x cosh Z53 \ p - N  

x cosh [Z~l 

+ cosh  [ Z  f2 

x cosh  [ Z ~ 3  

x c o s h  [ Z ~ I  

+ s inh  [ Z ~ 2  

x s inh  [ Z ~ 3  

x s inh  [ Z ~ l  

- s inh  [ Z  ~2 

x s inh  [ Z f 3  

x s inh  [ Z ~ l  

( R__<I R 

V ~ + ' - - - ~ 1  N 

I /N N R12R31)] 
]//N N 

R 

VN + ~ N  

V N  + N 

(6) 

Table 1. Number of relations (nr) and percentage of correct negative quartet relations for a 40-atom model structure 

Tanh (arg) 
0.4 
0.6 
0.8 
1.0 

Two cross-vectorsinmeasurements 
Our approach Hauptman'sapproach 
nr % nr % 
76 89"5 148 89"2 

8 100 12 100 

Three cross-vectors in measurements 
Our approach Hauptman'sapproach 
nr % nr % 

340 95.3 1136 88.4 
76 100 280 97-1 
20 100 80 100 

8 100 

Table 2. Number of relations (nr) and percentage of correct positive quartet relations for a 40-atom model structure 

Tanh (arg) 
0"4 
0-6 
0-8 
1.0 
1"2 
1"4 
1-6 
1"8 
2"1 
2.4 
2-7 
3-0 
3-5 
4.0 
5"0 
6"0 
7"0 
8"0 
9-0 

10-0 

Two cross-vectors in measurements 
Our approach Hauptman's approach 

o/ nr % nr /o 
4623 98.3 10843 93.4 
2616 99.2 6976 96"6 
1613 99"8 4501 98.2 
1054 100 2957 99.1 
738 100 2010 99.8 
519 100 1354 99"7 
363 100 899 100 
267 100 591 100 
179 I00 327 100 
140 100 195 100 
100 100 124 100 
64 100 96 100 
24 100 24 100 
24 100 4 100 

4 100 

Three cross-vectors in measuremdnts 
Our approach Hauptman's approach 
nr % nr % 

4640 98"0 7872 94.7 
2812 98"7 5644 97-6 
1760 99"3 3928 99"1 
1116 100 2632 99"5 
764 100 1720 99"6 
516 100 1124 100 
368 100 728 100 
288 100 496 100 
184 100 260 100 
148 100 156 100 
124 100 84 100 
76 100 56 100 
60 100 40 100 
44 100 4 100 
12 100 4 100 
4 100 
4 100 
4 100 
4 100 
4 100 
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In accordance with Hauptman's  notation, the Ei's are 
the base vectors of the quartet, the Eij's are the cross 
vectors, and 

Z~2 = R 1R2 ± R3R4, 
Z~23 = R2R3 -t- R 1R4, 
Z ~ l  = R 3 R 1  +R2R4. 

Equation (6) reduces to (3.13) of Hauptman & Green 
(1976) when the products RijRjk/N are negligible in 
comparison with Rik/l/N (which occurs in most 
structures). Let us now derive from the Hauptman 
distribution the value 

( V )  = ( ghl Ehzgh3Ehl +h 2 +h3) .  

One obtains 

1 1 
( V)  " -~ " -~ (R22 + R21+ R23 - 2), 

which is a value already given by Giacovazzo (1975, 
equation 10). If the value of (V  2) is also calculated, the 
probability distribution of the random variable Vmay 
be expanded in a Gram-Charl ier  series which, stopped 
to the first terms, gives a normal distribution for V. 
Hauptman's  distribution gives then a conclusive rela- 
tionship equivalent to 

P+ -~0"5 +0"5 

(R~2_+__R~I +R~3--2)  .'[ 
x t anh  R1R2R3R4 1 + 4 [ R 2 2 + R 2 3 + R 2 3 - 3 ] / N  ~' 

(7) 
already derived by Giacovazzo (1975, equation 13). 
We wish to emphasize that (6) and (7) have different 
physical meanings. (6) makes use of the concept of the 
sign distribution of the structure factors; the value of 
P+, in fact, is calculated given the seven magnitudes 
Rh, Rk, ..., Rk+~. On the contrary (7) postulates that a 
quartet has the same sign as its expected value 

f+oo ;+co 
( V )  . . . .  EhEkEiEh+k+l 

- - 0 0  - -  OC 

× P(Eh, ... I Rh + k, Rh + I, Rk + i)dEh...dEh +k + I. 

The estimation of ( V )  requires a fourfold integration 
on the basis vectors from - oo to + oe, and not merely 
on the signs as in (6). It comes therefore as no surprise 
that the positivity of a quartet depends, according to 
Giacovazzo, on the magnitudes of the cross vectors; 
according to Hauptman,  on an intricate interrelation- 
ship among all seven magnitudes. 

Exper imenta l  

A comparison between the general reliabilities of the 
sign relationships obtained by Hauptman & Green 
and by Giacovazzo is made in Tables 1-4. In order to 
make clear the comparison, we note: 

Table 3. Total number of relations and percentage of 
correct relations for a 40-atom model structure 

Tanh Our approach Hauptman'sapproach 
(arg) nr % nr 

0"4 9679 98"0 19999 93"6 
0"6 5512 99"0 12903 97"0 
0"8 3393 99"5 8509 98"6 
1"0 2170 100 5597 99"3 
1"2 1502 100 3730 99"7 
1.4 1035 100 2478 99"7 
1"6 731 100 1627 100 
1-8 555 100 1087 100 
2-1 363 100 587 100 
2"4 288 100 351 100 
2-7 224 100 208 100 
3"0 140 100 152 100 
3"5 84 100 64 100 
4"0 68 100 8 100 
5"0 16 100 4 100 
6"0 4 100 
7-0 4 100 
8"0 4 100 
9"0 4 100 

10"0 4 100 

Tanh 
(arg) 
0.4 
0-6 
0"8 
1"0 
1.2 
1-4 
1.6 
1.8 
2-1 
2.4 
2-7 
3"0 

Table 4. Total number of relations and percentage of 
correct relations for a lO0-atom model structure 

Our approach Hauptman's approach 

nr % nr % 
2812 96-3 11204 86"6 
1192 99"0 5588 92-8 
504 100 2988 96"0 
292 100 1668 96"9 
120 100 820 99-5 
44 100 480 100 
24 100 252 100 
20 100 160 100 

8 100 56 100 
4 100 16 100 

8 100 
4 100 

(a) the formulae are tested in P1 for two model struc- 
tures with N =40  and N = 100. 

(b) Quartets in which two and three cross vectors are 
contained in the measurements are both checked 
in the tables. The formulae under test are those 
given by Giacovazzo (1976b, equations 11, 12) 
and by Hauptman & Green (1976, equation 3.13). 
Even if the Hauptman approach is quite general, 
formulae for quartets in which only two cross 
vectors are in the measurements were not explicitly 
derived by Hauptman & Green. For them we have 
obtained (Giacovazzo, 1976d) when R12 is the 
absent reflexion, 

,,~ 1 + R 1Z~l P+_ _ ~; exp (-T-B/2) cosh R23Z2-3V- ~ cosh -33-----]//~, 

where 

L' =exp  ( -  B/2) cosh R23Z~-3 cosh R31Z~l 

R23Z23 R31Z31 
+ e x p ( + B / 2 )  cosh V N  cosh 1 / ~  . 



54 ON DIFFERENT PROBABILISTIC APPROACHES TO QUARTET THEORY 

(c) In the tables the number and the percentage of the 
correct quartets are given above the corresponding 
values of the arguments of the hyperbolic tangent. 
This is quite clear for Giacovazzo's approach. For 
Hauptman's approach the value of the argument of 
the hyperbolic tangent corresponding to the value 
P+ given by (3.13) is easily derivable from the 
equivalence 

P + = ½ + ½ tanh (arg). 

The tables suggests that both methods are able to give 
a good measure of the reliability of the quartets, but 
they seem to be not equivalent. In Tables 3 and 4, for 
example, 9679 and 2812 quartets respectively have 
probability values larger than 0"69 (or smaller than 
0"31), when Giacovazzo's formulae are used. The 
corresponding number of quartets whose probability 
values, according to Hauptman & Green's formulation, 
is larger than 0.69 (or smaller than 0.31) is 19999 and 
11204 respectively. Also different are the percentages 
of correct relations calculated by the two approaches. 

In accordance with the preceding paragraphs, we 
conclude that the two procedures both seem useful in 
procedures for crystal structure solution. 

References 
GIACOVAZZO, C. (1975). Acta Cryst. A 31, 252-259. 
GIACOVAZZO, C. (1976a). Acta Cryst. A32, 91-99. 
GIACOVAZZO, C. (1976b). Acta Cryst. A32, 74-82. 
GIACOVAZZO, C. (1976c). Acta Cryst. A32, 100-104. 
GIACOVAZZO, C. (1976d). Acta Cryst. A32, 958-966. 
GREEN, E. A. & HAUPTMAN, H. (1976). Acta Cryst. A32, 

43-45. 
HAUPTMAN, H. (1975a). Acta Cryst. A 31, 671-679. 
HAUPTMAN, H. (1975b). Acta Cryst. A31,680-687. 
HAUPTMAN, H. & GREEN, E. A. (1976). Acta Cryst. A32, 

45-49. 
KARLE, J. & HAUPTMAN, H. (1958). Acta Cryst. 11,264-269. 
KLUG, A. (1958). Acta Cryst. 11,515-543. 
NAYA, S., NITTA, I. • ODA, T. (1965). Acta Cryst. 19, 734- 

747. 
SCHENt<, H. (1973). Acta Cryst. A29, 77-82. 

Acta Cryst. (1977). A33, 54-58 

X-Ray Intensity Measurements on Large Crystals by Energy-Dispersive Diffractometry. 
III. Fine Structures of Integrated Intensities and Anomalous Scattering Factors near 

the K Absorption Edges in GaAs 
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The anomalous scattering factor f ' + / f "  of GaAs very near the K absorption edges has been inve- 
stigated with the stress on the following two points. One is the determination of f" from the measured 
f "  values through the linear absorption coefficient by calculation with the dispersion relation. The other 
concerns the effect of fine structures in the anomalous scattering factor on the integrated reflexion powers 
R555 and R 53-sv in the two ranges of _+20 eV near the Ga K and As K absorption edges. The agreement 
between these calculations and measurements of R values is fairly good; this fact justifies the application 
of the dispersion relation to the determination of the f '  values near the edge. Some advantages of this 
application are pointed out in terms of, particularly, the phase determination of reflexions from crystals 
with unknown structures. 

Introduction 

In Part I (Fukamachi, Hosoya & Okunuki, 1976a) of 
the present series, the energy dependence of diffracted 
intensities was discussed for energy-dispersive dif- 
fractometry on GaAs with a solid-state detector (SSD) 
in the energy range near the As K absorption edge. 
The observed and calculated results were compared 

* Present address: Saitama Institute of Technology. 
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University. 
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with each other in both symmetric Laue and symmetric 
Bragg cases. In Part II (Fukamachi, Hosoya & 
Okunuki, 1976b), it was confirmed theoretically as 
well as experimentally that the intensity ratio of a 
Friedel pair of h and h reflexions is given by IFh[Z/IFji] 2 
both for perfect and mosaic crystals in symmetric Laue 
and symmetric Bragg cases. 

In the present paper, the integrated reflexion power 
for a perfect GaAs crystal has been measured by the 
energy-dispersive method with an energy resolution 
of 1 eV, which is higher than the 5 eV in Parts I and II, 
in the energy region near the K absorption edges of 
Ga and As. Then the fine structures in the measured 


